Retake Numerical Mathematics 2
 April, 2020

Duration: 1 hour per test.

This is an open book exam.

In front of the questions one finds the points. The sum of the points plus 1 gives the end mark for this test in case of a first attempt. In case of a repair we take the minimum of the mark obtained here and a 6 .

Test 1

1. [2] Consider the problem $x^{3}=d$ for both x and d real where d is given and can be any number in $[-1,1]$. Determine the absolute condition number of this problem.
2. Consider the linear problem

$$
\left[\begin{array}{ccc}
4 & 2 & 0 \\
2 & 1+10^{-20} & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
6 \\
4 \\
1
\end{array}\right] .
$$

We want to solve this on a computer which uses a unit round-off of $1 \mathrm{e}-16$.
(a) [2] Give the solution if we use Gaussian elimination without pivoting.
(b) [1] Give the solution if we use Gaussian elimination with partial pivoting.
(c) [1] Which of the two approaches gives the correct approximate solution and why?
3. [3] Consider the graph of a symmetric matrix depicted below. Suppose we cut the problem in three parts by taking the unknowns in the two necks of the problem as separators. Moreover, suppose we order the unknowns in each of the three blocks in lexicographical order. Make a picture of the structure of the resulting linear system and indicate where the unknowns go.

Test 2 an 3 can be found on the other side

Test 2

Consider the matrix

$$
\left[\begin{array}{ccc}
4 & 3 & 0 \\
3 & 1 & \sqrt{3} \\
0 & \sqrt{3} & 0
\end{array}\right]
$$

1. [2] Give the absolute condition number in 2-norm of the associated eigenvalue problem.
2. [3] Locate the eigenvalues of the matrix using the Gerschgorin circle theorems.
3. [4] Make a QR factorization of the matrix using Householder matrices. Give R explicitly and indicate how one can apply Q by storing only the vectors defining the Housholder matrices. Hint: Note that from linearity we have that $A[\alpha 0]^{T}=\alpha A[10]^{T}$.

Test 3

1. Consider the function $f(x)$ on $[-1,1]$ given by

$$
f(x)= \begin{cases}1+x & \text { for } x \in[-1,0], \\ 1-x & \text { for } x \in[0,1] .\end{cases}
$$

(a) [1.5] Let $C_{n}(x)=\sum_{k=0}^{n} a_{k} T_{k}(x)$ be the Chebyshev expansion of $f(x)$. Show that $a_{k}=0$ for k odd.
(b) [3] Compute a_{0} and a_{2}.
(c) [0.5] Why will $C_{n}(x)$ converge pointwise to $f(x)$ on the whole interval $[-1,1]$ for n tending to infinity?
2. Consider for arbitrary $f(x)$ the integral $\int_{0}^{\infty} \exp (-x) f(x) d x$.
(a) [3] Derive that the first Gauss rule for this integral is simply $f(1)$.
(b) [1] Determine the degree of exactness of the rule in the previous part.

Test 1
$1 \quad x^{3}=d$ with $-1 \leq d \leq 1$.

$$
\begin{aligned}
& x=d^{1 / 3} \\
& \frac{d x}{d d}=\frac{1}{3} d^{-2 / 3}
\end{aligned} \quad \begin{aligned}
& |\Delta x| \leq \sum_{|a| k|3| 3}^{\max } d^{-2 / 3}|\Delta d|=c s \\
& \text { So there is no finite }
\end{aligned}
$$

So there is no finite cebs.condition number, \rightarrow the problem in unstable.

Without pivoting we get
2

$$
\begin{aligned}
& \approx a\left[\begin{array}{ccc}
\text { Without pivoting we get } & 10^{-100^{-10}} \\
10^{-100} & 0 & 1 \\
0 & 11 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
1 \\
1
\end{array}\right] \rightarrow\left[\begin{array}{ccc}
110^{-10} & 0 \\
0 & 1-10^{-20} & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
1-10^{-10} \\
1
\end{array}\right] \\
& {\left[\begin{array}{ccc}
1 & 10^{-10} & 0 \\
0-10^{-20} & 1 \\
0 & 0 & +10^{20}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1-10^{-10} \\
1+10^{20}\left(1-10^{-10}\right)
\end{array}\right] \simeq\left[\begin{array}{c}
1 \\
1-10^{-10} \\
10^{20}\left(1-10^{-10}\right)
\end{array}\right]} \\
& x_{3}=1-10^{-10} \\
& x_{2}=-10^{20}\left[\left(1-10^{-10}\right)-x_{3}\right]=-10^{20}\left[\left(1-10^{-10}\right)-\left(1-10^{-10}\right)\right]=0 \\
& x_{1}=1-10^{-10} 0=1
\end{aligned}
$$

b We start from $*$ and interchange row 2 and 3

$$
\begin{aligned}
& \begin{array}{ccc:l}
1 & 10^{-10} & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & -10^{-20} & 1 & 1-10^{-10}
\end{array} \rightarrow \begin{array}{lllll}
1 & 10^{-10} & 0 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & 1 & 1-10^{-10}+10^{-20} \\
\text { vacuole }
\end{array} \\
& x_{3}=1-10^{-10} \\
& x_{2}=1 \\
& x_{1}=1-10^{-10} x_{2}=1-10^{-10}
\end{aligned}
$$

C
The correct answer is given by the one above.
One could check that by compung the residual

$$
\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{ccc}
1 & 10^{-10} & 0 \\
10^{-10} & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=
$$

for result a we have

$$
\left[\begin{array}{l}
1-1 \\
1-10^{-10}-\left(1-10^{-10}\right) \\
1-0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

And for b

$$
\begin{aligned}
& \text { And for } b \\
& {\left[\begin{array}{l}
1-\left(1-10^{-10}\right)-10^{-10} \\
11-10^{-10}\left(1-10^{-10}\right) \\
1-1
\end{array}\right]=\left[\begin{array}{c}
0 \\
10^{-20} \\
0
\end{array}\right] .}
\end{aligned}
$$

If no partial pivoting is employed then the original row 3 will be overwhelmed by the second vows * It's in formation is loot in the round-off.

3

Test 2
Consider the matrix

$$
\left[\begin{array}{ccc}
4 & 3 & 0 \\
3 & 1 & \sqrt{3} \\
0 & \sqrt{3} & 0
\end{array}\right]_{a b}
$$

a Give the condition number of the cessocialed eigenvalue problem.

Answer
The conctetion un cen cero be fond from the
Raver Fine theorem saying

$$
\min _{\lambda_{i}^{\prime} \in(A)}^{\prime}\left|\lambda-\lambda_{i}\right| \leqslant K(P)\|E\|
$$

Where $P^{-1} A P^{+}=D$, for any norm.
Here we have a symmetric matrix, hence p is arthogn
Sob PDH_{2} EXP $\mathrm{H}_{2}=1 \rightarrow K_{2}(R)=1$
b Locate the eigenvalues of the matrix using the Gershori circle theorems.
Answer:
Three circles, $c_{1}=4, r=3, c_{2}=1, r_{2}=3+\sqrt{3} c_{3}=0, r_{2}=\sqrt{3}$

Moreover, the
matrix is'symminnit and real \rightarrow eeigen v aver veal. Also the matrix is irreducible since we can yet for each unkuow th any
So since not all circles go through $-2-\sqrt{3}$ and 7 we have that the eigur are on $(-2, \sqrt{3}, 7)^{+}$

C Make a QR factorization of the matrix using Householder matrices. Give Rexplicilly
thin: note that
Answer and Educate how the Q com be applied know y the velours Hofricigy the Housel der man ac
For the first column we need to mirror a

$$
\left[\begin{array}{l}
4 \\
3
\end{array}\right] \text { to }\left[\begin{array}{l}
5 \\
0
\end{array}\right]
$$

The normal of the mirror plane in given by $\left[\begin{array}{l}5 \\ 0\end{array}\right]-\left[\begin{array}{l}4 \\ 3\end{array}\right]=\left[\begin{array}{c}1 \\ -3\end{array}\right] \rightarrow V_{1}=\frac{1}{\sqrt{10}}\left[\begin{array}{c}1 \\ -3\end{array}\right]$
So $H_{1}=\left[\begin{array}{cc}I-2 w_{1}^{\top} & 0 \\ 0 & 1\end{array}\right]$
(I-2v, ,,$\left.{ }^{7}\right)\left[\begin{array}{l}3 \\ 1\end{array}\right]=\left[\begin{array}{l}3 \\ 1\end{array}\right] \quad$ ([[3] is in the mirror place)

$$
\left(I-2 v w^{\top}\right)\left[\begin{array}{l}
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right]-\frac{2}{10}\left[\begin{array}{l}
1 \\
3
\end{array}\right](-3)=\left[\begin{array}{l}
0 \\
1
\end{array}\right]+\frac{3}{5}\left[\begin{array}{l}
1 \\
-3
\end{array}\right]=\frac{1}{5}\left[\begin{array}{c}
3 \\
-4
\end{array}\right]
$$

So $H_{1}\left[\begin{array}{lll}4 & 3 & 0 \\ 3 & 1 & \sqrt{3} \\ 0 & 1 & 0\end{array}\right]=\left[\begin{array}{lll}5 & y_{2} & 2 \\ 0 & 1 & \sqrt{3} \\ 0 & 1 \sqrt{3} & \sqrt{1} \\ 0 & \sqrt{3} & 0\end{array}\right]$
Next we consider $\left[\begin{array}{l}1 \\ 18\end{array}\right]$ which should be mirrored to $\left[_{2}^{2}\right.$ hence $\hat{v}_{2}=\left[\begin{array}{l}2 \\ 0\end{array}\right]-\left[v_{3}=\left[\begin{array}{c}1 \\ -\sqrt{3}\end{array}\right] \quad v_{2}=\frac{\hat{v}_{3}}{\| v_{2} 1}\right.$

$$
\begin{aligned}
& H_{2}=\left[\begin{array}{cc}
1 & 0 \\
0 & I-2 w_{20}^{7}
\end{array}\right] \\
& {\left[E-v_{1} v_{2}^{\pi}\right]\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]-2\left[\begin{array}{l}
1 \\
-\frac{1}{2} \frac{1}{2}
\end{array}=\left[\begin{array}{l}
0 \\
\sqrt{3}
\end{array}\right]\right.} \\
& H_{2}\left[\begin{array}{ccc}
5 & 3 & 3 \sqrt[3]{3} \\
0 & 1 & -\frac{4}{3} \sqrt{3} \\
0 & \sqrt{3} & 0
\end{array}\right]=\left[\begin{array}{ccc}
5 & 3 & \frac{3}{3} \sqrt{2} \\
0 & 2 & 0 \\
0 & 0 & -\frac{12}{5}
\end{array}\right]
\end{aligned}
$$

Apparently $Q^{\top}=H_{2} H_{1} \rightarrow Q=H_{1} H_{2}$ istoris V_{1} and V_{2} isencung to apply H_{2} add H_{1} successively as above

E $C_{n}(x)$ converges point ur because $P_{\text {(x) }}$ is' continuous.

Test 3

Consider the function $f(x)$ which is $\left\{\begin{array}{l}1+x \text { for } x \in(-1,0] \\ 1-x \text { for } x \in[0,1]\end{array}\right.$

$$
1-x \text { for } x \in[0,1]
$$

a Show, that th a $a_{k}=0$ for k odd
Note that $T_{2 i+1}(\cos \theta)=\cos (2 i+1) \theta$
ooh nit book. If $x=\cos \theta \quad T(x)=\bar{r} \theta \cos \theta)=\cos (2 i+1)$

$$
=\cos (2 i+1) \pi-(2 i+1)
$$

The function is even and also the interval $=-\infty$ is sym. wirt-o. More ora, $\mathrm{T}_{2 i}$ are even and $T_{2 i+1}$ ave odd: $a_{2 i+1}=\frac{\left(f(x), T_{2 i+1}\right)}{\left\|T_{2 i+1}\right\|^{2}}$
b So we have

$$
C_{2}(x)=a_{0} T_{0}(x)+a_{2} T_{2}(x)
$$

$$
\begin{aligned}
& \min _{\mathbb{0}_{0}, c_{2}}\left\|f(x)-C_{2}(x)\right\|_{2}^{2} g \text { ives.... } \\
& \left(f(x), T_{0}=\frac{\left(f(x), T_{0}(x)\right)}{\left\|T_{0}(x)\right\|^{2}}, a_{2}=\frac{\left(f_{(x)} T_{2}(x)\right)}{\left(\Pi_{2}(x) \|^{2}\right.}\right. \\
& \left(\frac{1}{1} \frac{1}{\sqrt{1-x^{2}}} f(x), T_{0}(x) d x=2 \int_{0}^{1} \frac{1}{\sqrt{1-x^{2}}}(1-x) T_{0}(x) d\right.
\end{aligned}
$$

ow $T_{k}(\cos y)=\cos (k y)$
sub. $x=\cos y$
idem $\int_{\frac{1}{2} \pi}^{0} \frac{1}{\sin 4}(1$

$$
\left\|T_{0}(x)\right\|^{2}=2 d y=H
$$

i dem

$$
\begin{aligned}
& \begin{array}{l}
\cos \alpha+\beta=\cos \alpha \cos \beta-\operatorname{con} \cos . \\
\cos (\alpha-\beta)=
\end{array} \\
& \left.=\int_{0}^{1 / 2 n} \cos 3 y+\cos y d y=\frac{1}{3} \sin y+\sin y \right\rvert\, \begin{array}{c}
\text { e-6-2019 13:26 }
\end{array}
\end{aligned}
$$

per ouglue alceme-
int gerelued.
feneral expression

$$
\begin{aligned}
& i=c_{2 k}=\frac{\int_{0}^{1 / 2 \pi}(1-\cos y) \cos 2 k y d y}{\int_{0}^{1 / 2 \pi}(\cos 2 k y)^{2} d y}=\frac{\left.y_{0}^{1 / 2 \pi} \int_{0}^{1} \cos (2 k+1) y+\cos 2 k-1\right) y d y}{\frac{1}{2} \int_{0}^{1 / 2 \pi} \cos 4 k y+1 d y} \\
& =\frac{\frac{1}{2 k+1} \sin \left(2 k+1 y+\frac{1}{2 k-1} \sin (2 k-1) y \int_{0}^{1 / 2}\right.}{4 \frac{1}{2} \pi}=\frac{\frac{1}{2 k+1} \cdot \sin \left(k+\frac{1}{2}\right) \pi+\frac{1}{2 k-1} \operatorname{cin}(k)}{\frac{1}{2} \pi} \\
& =\frac{\frac{1}{2 k+1}(-1)^{k}-\frac{1}{2 k-1}(-1)^{k+}}{\frac{1}{2} n}=\frac{\left(\frac{1}{2 k+1}-\frac{1}{2 k-1}\right)(-1)^{k}}{\frac{1}{2} n}= \\
& =\frac{2}{\frac{4 h^{2}-1}{i n}}(-1)^{k}=\left(\frac{k 1}{n\left(h^{2}-\frac{k}{h}\right)}\right) \cdot\left(-A^{k}\right. \\
& C(x)^{7}=1-\frac{2}{n}+\frac{1}{H} \sum_{k=1}^{\infty} \frac{1}{\left(k^{2}-\frac{1}{4}\right)}(-1)^{k} T_{2 k}(x)
\end{aligned}
$$

$$
\begin{aligned}
& T_{2 k}(0)=T_{2 k}\left(\cos \frac{1}{2} H\right)=\cos 2 k \cdot \frac{1}{2} n=\cos k_{n}=(-1)^{k} \\
& C(0)=1-\frac{2}{n}+\frac{1}{4} \sum_{k=1}^{\infty} \frac{1}{k^{2}-\frac{1}{4}} \\
& \text { sommeren hennje } \\
& \text { kmap } \\
& \frac{1}{k^{2}-\frac{1}{\frac{1}{2}}}=\frac{1}{\left(k+\frac{1}{2}\right)\left(k+\frac{1}{2}\right)}=\frac{1}{k-\frac{1}{2}}-\frac{1}{k+\frac{1}{2}} \\
& \rightarrow \sum_{k=1}^{\infty} \frac{1}{k^{2}-\frac{1}{4}}=\frac{1}{k-\frac{k}{2}}=2 \\
& \rightarrow C(0)=1 \\
& C_{(1)}^{\circ} T_{2 k}(1)=T_{2 k}(\cos \theta)=\cos 2 k \cdot 0=\phi \quad \text { Also } T_{2 k}(-1)=1 \\
& C(1)=1-\frac{2}{\pi}+\frac{1}{4} \sum_{k=1}^{\infty} \frac{(-1)^{k}}{k^{2}-\frac{1}{4}}=1-\frac{2}{n}-\frac{1}{\pi} \sum_{m=1}^{\infty} \frac{1}{(2 m-1)^{2}-\frac{1}{4}}-\frac{1}{(2 m)^{2}}-\frac{t}{4} \\
& (2 m-1)^{2}-\frac{1}{4} \text {. } \\
& \text { dit weet in mint. }
\end{aligned}
$$

$2 a$
One weds an accurate nimeried inilegratien vale for the integrals $\int_{0}^{\infty} e^{-x} f(x) d x$.

Determine the first gauss rule
In geneal we have
integration is the exact integration of a polynomial =terpubtion of $P(x$
So $f(x) \approx \sum_{i=0}^{n} f\left(x_{i}\right) l_{i}^{(n)}(x)$

$$
\text { where } l_{i}^{(n)}=\prod_{j=1}^{n}\left(\frac{(x}{j+i}\left(x_{i}-x_{j}\right)\right)
$$

For the gauss method the inter potation pan ts are the zeros of the associated orthogonal polynomial.
In this case the first polynomial with a zero is $x-\alpha$ where a should be chows such that $(x-a, 1)=0$ is the associated in. product.
So $\quad \int_{0}^{\infty} e^{-x}(x-a) d x=0 \rightarrow \alpha \int_{0}^{\infty} e^{-x} d x=\int_{0}^{\infty} e^{-x} x d x$ $=\underbrace{c}_{0}=\begin{gathered}e^{-x} \times\left.\right|^{c o s}+S^{c} e^{-x} c \\ \text { sam }\end{gathered}$

$$
\rightarrow e x=1
$$

ox in also the zero so $x_{0}=1$

$$
\text { and } \quad l_{0}^{(0)}(x)=1
$$

So the first integration rale will be

$$
\begin{aligned}
& \text { the firs integration rale we } \\
& \qquad \int_{0}^{\infty} e^{-x} f(1) \mid d x=f(1) \int_{0}^{\infty} e^{-x} d x=f(1) \\
& \int_{0}^{\infty} f(x) e^{-x} d x \simeq f(1)
\end{aligned}
$$

$2 b$ Dearee of exactness.
To which clegree ittios explynovials ave vileguatid exally by the vule. Use that Inum. Sintey is hinear

not equal
so degree exactross is 1
Alternaturly: Saus has degree of exactness $22 n+1$ wheren is He number of interp.pints here $i \rightarrow$ degree is 1

